Respuesta :
Answer:
[tex]\displaystyle \int\limits^7_1 {\frac{1}{x}} \, dx = \ln 7[/tex]
General Formulas and Concepts:
Calculus
Integration
- Integrals
Integration Rule [Fundamental Theorem of Calculus 1]: [tex]\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)[/tex]
Area of a Region Formula: [tex]\displaystyle A = \int\limits^b_a {[f(x) - g(x)]} \, dx[/tex]
Step-by-step explanation:
Step 1: Define
Identify
[tex]\displaystyle f(x) = \frac{1}{x} \\\left[ 1 ,\ 7 \right][/tex]
Step 2: Integrate
- Substitute in variables [Area of a Region Formula]: [tex]\displaystyle \int\limits^7_1 {\frac{1}{x}} \, dx[/tex]
- [Integral] Logarithmic Integration: [tex]\displaystyle \int\limits^7_1 {\frac{1}{x}} \, dx = \ln \big| x \big| \bigg| \limits^7_1[/tex]
- Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]: [tex]\displaystyle \int\limits^7_1 {\frac{1}{x}} \, dx = \ln 7 - \ln 1[/tex]
- Simplify: [tex]\displaystyle \int\limits^7_1 {\frac{1}{x}} \, dx = \ln 7[/tex]
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Integration