Respuesta :
Answer:
[tex]\displaystyle \int\limits^3_{-1} {2x + 4} \, dx = 24[/tex]
General Formulas and Concepts:
Calculus
Integration
- Integrals
Integration Rule [Reverse Power Rule]: [tex]\displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C[/tex]
Integration Rule [Fundamental Theorem of Calculus 1]: [tex]\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)[/tex]
Integration Property [Multiplied Constant]: [tex]\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx[/tex]
Integration Property [Addition/Subtraction]: [tex]\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx[/tex]
Area of a Region Formula: [tex]\displaystyle A = \int\limits^b_a {[f(x) - g(x)]} \, dx[/tex]
Step-by-step explanation:
Step 1: Define
Identify
[tex]\displaystyle f(x) = 2x + 4 \\\left[ -1 ,\ 3][/tex]
Step 2: Integrate
- Substitute in variables [Area of a Region Formula]: [tex]\displaystyle \int\limits^3_{-1} {2x + 4} \, dx[/tex]
- [Integral] Rewrite [Integration Property - Addition/Subtraction]: [tex]\displaystyle \int\limits^3_{-1} {2x + 4} \, dx = \int\limits^3_{-1} {2x} \, dx + \int\limits^3_{-1} {4} \, dx[/tex]
- [Integrals] Rewrite [Integration Property - Multiplied Constants]: [tex]\displaystyle \int\limits^3_{-1} {2x + 4} \, dx = 2 \int\limits^3_{-1} {x} \, dx + 4 \int\limits^3_{-1} {} \, dx[/tex]
- [Integrals] Integration Rule [Reverse Power Rule]: [tex]\displaystyle \int\limits^3_{-1} {2x + 4} \, dx = 2 \bigg( \frac{x^2}{2} \bigg) \bigg| \limits^3_{-1} + 4(x) \bigg| \limits^3_{-1}[/tex]
- Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]: [tex]\displaystyle \int\limits^3_{-1} {2x + 4} \, dx = 2(4) + 4(4)[/tex]
- Simplify: [tex]\displaystyle \int\limits^3_{-1} {2x + 4} \, dx = 24[/tex]
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Integration