Which graph represents the function of f(x) = the quantity of 9 x squared plus 9 x minus 18, all over 3 x plus 6

A. graph of 3 x plus 6, with discontinuity at 2, 12

B. graph of 3 x plus 6, with discontinuity at negative 2, 0

C. graph of 3 x minus 3, with discontinuity at negative 2, negative 9

D. graph of 3 x minus 3, with discontinuity at 2, 3

Which graph represents the function of fx the quantity of 9 x squared plus 9 x minus 18 all over 3 x plus 6 A graph of 3 x plus 6 with discontinuity at 2 12 B g class=
Which graph represents the function of fx the quantity of 9 x squared plus 9 x minus 18 all over 3 x plus 6 A graph of 3 x plus 6 with discontinuity at 2 12 B g class=
Which graph represents the function of fx the quantity of 9 x squared plus 9 x minus 18 all over 3 x plus 6 A graph of 3 x plus 6 with discontinuity at 2 12 B g class=
Which graph represents the function of fx the quantity of 9 x squared plus 9 x minus 18 all over 3 x plus 6 A graph of 3 x plus 6 with discontinuity at 2 12 B g class=

Respuesta :

caylus
Hello,

y=(9x²+9x-18)/(3x+6)=(9(x-1)(x+2))/(3(x+2))
If x≠-2 then y=3(x-1)==>y=3x-3
So we must exclude (-2,-9)

Answer C (graph n°3)

Answer:

The answer is the option C

graph of [tex]3x[/tex] minus [tex]3[/tex], with discontinuity at negative [tex]2[/tex], negative [tex]9[/tex]

Step-by-step explanation:

we have

[tex]f(x)=\frac{9x^{2}+9x-18}{3x+6}[/tex]

Simplify

[tex]f(x)=9\frac{(x^{2}+x-2)}{3(x+2)}[/tex]

[tex]f(x)=3\frac{(x^{2}+x-2)}{(x+2)}[/tex]

Step 1

Convert to a factored form the numerator

[tex]x^{2}+x-2=0[/tex]    

Group terms that contain the same variable, and move the constant to the opposite side of the equation

[tex]x^{2}+x=2[/tex]

Complete the square. Remember to balance the equation by adding the same constants to each side.

[tex]x^{2}+x+0.25=2+0.25[/tex]

[tex]x^{2}+x+0.25=2.25[/tex]

Rewrite as perfect squares

[tex](x+0.5)^{2}=2.25[/tex]

Square root both sides

[tex]x+0.5=(+/-)1.5[/tex]

[tex]x=-0.5(+/-)1.5[/tex]

[tex]x=-0.5+1.5=1[/tex]

[tex]x=-0.5-1.5=-2[/tex]

so

[tex]x^{2}+x-2=(x-1)(x+2)[/tex]  

Step 2

Simplify the function f(x)

[tex]f(x)=3\frac{(x^{2}+x-2)}{(x+2)}=3\frac{(x-1)(x+2)}{(x+2)}[/tex]

The domain of the function f(x) is all real numbers except the number [tex]x=-2[/tex]

Because the denominator can not be zero

[tex]f(x)=3\frac{(x-1)(x+2)}{(x+2)}=3(x-1)=3x-3[/tex]  

[tex]f(x)=3x-3[/tex]  ------> with a discontinuity at [tex]x=-2[/tex]

[tex]f(-2)=3(-2)-3=-9[/tex]

The discontinuity is at point [tex](-2,-9)[/tex]

the answer in the attached figure

Ver imagen calculista
Q&A Education