Respuesta :

You could solve this equation by referring to the quadratic equation
x=-5+/-√17/2

Answer:

[tex]x=\frac{-5+\sqrt{17}}{2}[/tex] , [tex]x=\frac{-5-\sqrt{17}}{2}[/tex]

Step-by-step explanation:

Find solution of [tex]x^2 + 5x = -2[/tex]

To solve for x, we set the equation =0

Add 2 on both sides

[tex]x^2 + 5x +2=0[/tex]

Now we use quadratic formula

[tex]x=\frac{-b+-\sqrt{b^2-4ac}}{2a}[/tex]

The value of a=1, b=5 and c=2, plug in all the values

[tex]x=\frac{-5+-\sqrt{5^2-4(1)(2)}}{2(1)}[/tex]

[tex]x=\frac{-5+-\sqrt{17}}{2}[/tex]

We get two values for x

[tex]x=\frac{-5+\sqrt{17}}{2}[/tex] , [tex]x=\frac{-5-\sqrt{17}}{2}[/tex]

Q&A Education