Respuesta :
You could solve this equation by referring to the quadratic equation
x=-5+/-√17/2
x=-5+/-√17/2
Answer:
[tex]x=\frac{-5+\sqrt{17}}{2}[/tex] , [tex]x=\frac{-5-\sqrt{17}}{2}[/tex]
Step-by-step explanation:
Find solution of [tex]x^2 + 5x = -2[/tex]
To solve for x, we set the equation =0
Add 2 on both sides
[tex]x^2 + 5x +2=0[/tex]
Now we use quadratic formula
[tex]x=\frac{-b+-\sqrt{b^2-4ac}}{2a}[/tex]
The value of a=1, b=5 and c=2, plug in all the values
[tex]x=\frac{-5+-\sqrt{5^2-4(1)(2)}}{2(1)}[/tex]
[tex]x=\frac{-5+-\sqrt{17}}{2}[/tex]
We get two values for x
[tex]x=\frac{-5+\sqrt{17}}{2}[/tex] , [tex]x=\frac{-5-\sqrt{17}}{2}[/tex]