Respuesta :
7 and 1/8. all you need to do is add these together by getting a common denominator of eight
Answer:
[tex]8\frac{1}{8}[/tex]
Step-by-step explanation:
The sides of the triangle are [tex]2 \frac{1}{8} \:\text{feet}[/tex] , [tex]3 \frac{1}{2} \:\text{feet}[/tex], and [tex]2 \frac{1}{2} \:\text{feet}[/tex]
We need to find the distance around a triangle, so we have to add all the three sides.
So, the distance around a triangle is [tex]2 \frac{1}{8}+3 \frac{1}{2}+2 \frac{1}{2}[/tex]
[tex]=2+3+2+\frac{1}{8} +\frac{1}{2} +\frac{1}{2}[/tex]
[tex]=7+1+\frac{1}{8}[/tex]
[tex]=8+\frac{1}{8}[/tex]
[tex]=8\frac{1}{8}[/tex] feet
Hence, the distance around a triangle that has sides measuring [tex]2 \frac{1}{8} \:\text{feet}[/tex] , [tex]3 \frac{1}{2} \:\text{feet}[/tex], and [tex]2 \frac{1}{2} \:\text{feet}[/tex] is [tex]8\frac{1}{8}[/tex] feet.