Celine has a bottle that contains 20% of milk and the rest water. The bottle has 1 liter of water.

Part A: Write an equation in one variable that can be used to find the total number of liters of milk and water in the bottle. Define the variable used in the equation.

Part B: How many liters of milk are present in the bottle? Show your work.

Respuesta :

Part A:
x - total number of liters ( milk + water ) 
0.2 x + 1 = x
Part B : 
0.2 x + 1 = x
0.8 x = 1
x = 1 : 0.8 = 1.25 lit.
Milk:
1.25  x  0.2 = 0.25 lit.

A. As per linear equation, the equation can be used to find the total number of liters of milk and water in the bottle: is [tex]\frac{x}{5} + 1 = x[/tex].

B. The milk in the bottle is 0.25 liters.

What is a linear equation?

"A linear equation is an equation that has the highest power of the variable of 1."

Let, the total amount of milk and water in the bottle is 'x' liters.

The bottle contains 20% of milk and the rest water.

The bottle has 1 liter of water.

Therefore, the amount of milk in the bottle is

[tex]= \frac{20x}{100} liters\\= \frac{x}{5} liters[/tex]

A. The equation can be used to find the total number of liters of milk and water in the bottle is

[tex]\frac{x}{5} + 1 = x[/tex]

B. Now, the amount of milk in the bottle can be calculated as:

[tex]\frac{x}{5} + 1 = x[/tex]

⇒ [tex]x - \frac{x}{5} = 1[/tex]

⇒ [tex]\frac{4x}{5} = 1[/tex]

⇒ [tex]x = \frac{5}{4}[/tex]

⇒ [tex]x = 1.25[/tex]

Therefore, the milk in the bottle is

[tex]= \frac{x}{5} liters\\ = \frac{1.25}{5} liters\\= 0.25 liters[/tex]

Learn more about a linear equation here: https://brainly.com/question/2386120

#SPJ2

Q&A Education