Respuesta :
H = K + log ( A/C )
log ( A/C ) = H - K
[tex] \frac{A}{C}= 10^{H-K} [/tex]
[tex]A = C*10 ^{H-K} [/tex]
log ( A/C ) = H - K
[tex] \frac{A}{C}= 10^{H-K} [/tex]
[tex]A = C*10 ^{H-K} [/tex]
Answer:
[tex]A=C(10)^{H-K}[/tex]
Step-by-step explanation:
The given equation is
[tex]H=K+\log(\frac{A}{C}[/tex]
Subtract K to both sides of the equation
[tex]H-K=\log(\frac{A}{C}[/tex]
Now, use the property, [tex]x=\log y\Rightarrow y=10^x[/tex]
[tex]10^{H-K}=(\frac{A}{C}[/tex]
Multiply both sides by C to isolate A
[tex]A=C(10)^{H-K}[/tex]
The value of A is
[tex]A=C(10)^{H-K}[/tex]