Stefan sold 13 packages of cc and 1 package of cd for 147 dollars. Alberto sold 8 packages of wc and 10 packages of gb for 250 dollars. Find the cost each package of wc and one package of gb

Respuesta :

The selling cost of 1 packet of w c  = $ 10

The selling cost of 1 packet of g b  =   $ 17

Step-by-step explanation:

Let us assume the cost of 1 packet of w c  = $ m

and the cost of 1 packet of g b  =   $ n

The cost of 13 packages  of w c   +  1 package  of  g b   =  $  147

13 x ( cost of 1 package of w c )   + 1 package  of  g b     = $ 147

⇒ 13  x (m)  +  1 x (n)  = 147

13 m +  n = 147   ..... (1)

The cost of 8 packages  of w c   +  10 package  of  g b   =  $ 250

8 x ( cost of 1 package of w c )   + 10 x (cost of 1 package of g b ) = $ 250

⇒8   x (m)  +  10 x (n)  = 250

8 m +  10 n = 250   ..... (2)

Now, solving for the values of m and n:

13 m +  n = 147    ⇒  n  = 147 - 13 m

Putting this in   8 m +  10 n = 250  , we get:

8 m + 10 ( 147 - 13 m)  = 250

or, 8 m +  1470 - 130 m = 250

or, -122 m = -1220

or, m = [tex]\frac{1220}{122}[/tex] = 10

m = $10

⇒  n = 147 - 13 (10)  = 147 - 130  = 17 ⇒   n = $17

Hence, the cost of 1 packet of w c  = $ 10

and the cost of 1 packet of g b  =   $ 17

Q&A Education