A planet follows an elliptical path described by 16 x squared + 4 y squared = 64. A comet follows the parabolic path y equals x squared minus 4. Where might the comet intersect the orbiting​ planet?

Respuesta :

Answer:

The comet might intersect the orbiting planet at (0, -4),[tex](\pm\frac{\sqrt{31}}{2},\frac{15}{4})[/tex].

Step-by-step explanation:

Given that, a planet follows an elliptical path described by

[tex]16x^2+4y^2=64[/tex] .........(1)

A comet follows the parabolic path

[tex]y=x^2-4[/tex]

[tex]x^2=y+4[/tex].........(2)

To find the intersecting point, we need to solve the above equations.

Putting  [tex]x^2=y+4[/tex]  in the equation (1)

[tex]y+4+4y^2=64[/tex]

[tex]\Rightarrow 4y^2+y+4-64=0[/tex]

[tex]\Rightarrow 4y^2+y-60=0[/tex]

[tex]\Rightarrow 4y^2+16y-15y-60=0[/tex]

[tex]\Rightarrow 4y(y+4)-15(y+4)=0[/tex]

[tex]\Rightarrow(y+4)(4y-15)=0[/tex]

[tex]\Rightarrow y=-4, \frac{15}{4}[/tex]

When y = -4 , then [tex]x^2=-4+4[/tex] [tex]\Rightarrow x=0[/tex]

When [tex]y=\frac{15}{4}[/tex], then [tex]x^2=\frac{15}{4}+4[/tex] [tex]\Rightarrow x=\pm \frac{\sqrt{31}}{2}[/tex]

The comet might intersect the orbiting planet at (0, -4),[tex](\pm\frac{\sqrt{31}}{2},\frac{15}{4})[/tex].

Q&A Education