Answer:
The equation of demand function is
[tex]y=-\frac{1}{2000}x+29[/tex]
Step-by-step explanation:
We have two point demand function
(38000,10) and (42000,8)
Here [tex]x_1[/tex]=38,000, [tex]y_1[/tex]=10, [tex]x_2[/tex]=42000, [tex]y_2[/tex]=8
The slope of the demand function line is
[tex]=\frac{y_2-y_1}{x_2-x_1}[/tex]
[tex]=\frac{8-10}{42000-38000}[/tex]
[tex]=\frac{-2}{4000}[/tex]
[tex]=-\frac{1}{2000}[/tex]
The equation of demand function is
[tex]y-y_1=m(x-x_1)[/tex]
[tex]\Rightarrow (y-10)=-\frac{1}{2000}(x-38000)[/tex]
[tex]\Rightarrow y-10=-\frac{1}{2000}x+\frac{38000}{2000}[/tex]
[tex]\Rightarrow y=-\frac{1}{2000}x+19+10[/tex]
[tex]\Rightarrow y=-\frac{1}{2000}x+29[/tex]