Respuesta :
Answer:
[tex](D)-2(28z-14) \: and\:\\(E) -7(8z-4)[/tex]
Step-by-step explanation:
We are to determine which of these expressions are equivalent to: [tex]-56 z + 28[/tex]
[tex](A)\frac{1}{2}\cdot(-28z+14) \\(B)(-1.4z+0.7)40\\(C)(14-7z)\cdot(-4)\\(D)(8z-4)(-7)\\(E)-2(-28z-14)[/tex]
[tex]-56 z + 28[/tex]
- If we factor out -2
[tex]-56 z + 28=-2(\frac{ -56 z}{-2} + \frac{28}{-2})=-2(28z-14)[/tex]
- If we factor out -7
[tex]-56 z + 28=-7(\frac{ -56 z}{-7} + \frac{28}{-7})=-7(8z-4)[/tex]
Therefore, the two equivalent expressions are:
[tex]-2(28z-14) \: and\: -7(8z-4)[/tex]
Answer:
6+3(5−2x)
Option (B) is correct. Using the distributive property, 6+3(5−2x)=6+15−6x=21−6x. None of the other selections is equivalent
Step-by-step explanation: If 5(2x+1)=3(x+4)−5, what is the value of x ?