Respuesta :

Answer:

(30)(37)(-6⁷)(38⁸)

Step-by-step explanation:

(36⁴−6⁹)(38⁹−38⁸)

(36⁴ - 6⁹) = (6²)⁴ - 6⁹

= 6⁸ - 6⁹

= 6⁷(6 - 6²)

= 6⁷(6 - 36)

= 6⁷(-30)

(38⁹ - 38⁸)

= 38⁸(38 - 1)

= 38⁸(37)

36⁴−6⁹)(38⁹−38⁸)

6⁷(-30) × 38⁸(37)

(30)(37)(-6⁷)(38⁸)

Clearly 30 and 37 are factors, so divisible by them

It is true that the expression [tex](36^5-6^9)(38^9-38^8)[/tex] is divisible by 30 and 37

How to prove the expression

The expression is given as:

[tex](36^5-6^9)(38^9-38^8)[/tex]

Express 36 as 6^2

[tex]((6^2)^5-6^9)(38^9-38^8)[/tex]

This gives

[tex](6^{10}-6^9)(38^9-38^8)[/tex]

Factor out 6^8

[tex]6^8(6^2-6)(38^9-38^8)[/tex]

Evaluate the exponent of 2

[tex]6^8(36-6)(38^9-38^8)[/tex]

Evaluate the difference

[tex]6^8(30)(38^9-38^8)[/tex]

Factor out 38^8

[tex]6^8(30)(38^8)(38-1)[/tex]

[tex]6^8(30)(38^8)(37)[/tex]

30 and 37 are among the factors of the above expression.

Hence, it is true that the expression [tex](36^5-6^9)(38^9-38^8)[/tex] is divisible by 30 and 37

Read more about expressions at:

https://brainly.com/question/723406

Q&A Education