Respuesta :
Answer:
(30)(37)(-6⁷)(38⁸)
Step-by-step explanation:
(36⁴−6⁹)(38⁹−38⁸)
(36⁴ - 6⁹) = (6²)⁴ - 6⁹
= 6⁸ - 6⁹
= 6⁷(6 - 6²)
= 6⁷(6 - 36)
= 6⁷(-30)
(38⁹ - 38⁸)
= 38⁸(38 - 1)
= 38⁸(37)
36⁴−6⁹)(38⁹−38⁸)
6⁷(-30) × 38⁸(37)
(30)(37)(-6⁷)(38⁸)
Clearly 30 and 37 are factors, so divisible by them
It is true that the expression [tex](36^5-6^9)(38^9-38^8)[/tex] is divisible by 30 and 37
How to prove the expression
The expression is given as:
[tex](36^5-6^9)(38^9-38^8)[/tex]
Express 36 as 6^2
[tex]((6^2)^5-6^9)(38^9-38^8)[/tex]
This gives
[tex](6^{10}-6^9)(38^9-38^8)[/tex]
Factor out 6^8
[tex]6^8(6^2-6)(38^9-38^8)[/tex]
Evaluate the exponent of 2
[tex]6^8(36-6)(38^9-38^8)[/tex]
Evaluate the difference
[tex]6^8(30)(38^9-38^8)[/tex]
Factor out 38^8
[tex]6^8(30)(38^8)(38-1)[/tex]
[tex]6^8(30)(38^8)(37)[/tex]
30 and 37 are among the factors of the above expression.
Hence, it is true that the expression [tex](36^5-6^9)(38^9-38^8)[/tex] is divisible by 30 and 37
Read more about expressions at:
https://brainly.com/question/723406