Please Help! Unit 8: Right Triangles & Trigonometry Homework 7: Law of Sines
Answer:
9= 71.67°
10= 60.65°
11= 86.59°
12= 62.30°
13= 34.51°
14= 51.71°
15= 22.87°
16= 44.63°
Step-by-step explanation:
The law of sine requires that if we have three sides of length A, B and C with their respective angles as a, b and c then these can be related by
[tex]\frac{a}{Sin \ A\textdegree}=\frac{b}{Sin \ B\textdegree}=\frac{c}{Sin \ C\textdegree}[/tex]
9.
[tex]\frac{11}{Sin \ 27^{\circ}}=\frac{b}{Sin \ B\textdegree}=\frac{c}{Sin \ C \textdegree}[/tex]
Making x the subject of the formula then
[tex]x=sin^{-1}(\frac {23\ sin\ 27^{\circ}}{11}\approx 71.67^{\circ}[/tex]
10.
[tex]\frac{8}{Sin \ 85\textdegree}=\frac{7}{Sin \ x\textdegree}[/tex]
Making x the subject of the formula then
[tex]x=sin^{-1}(\frac {7\ sin\ 85^{\circ}}{8}\approx 60.65^{\circ}[/tex]
11.
[tex]\frac{26}{Sin \ 74\textdegree}=\frac{27}{Sin \ x\textdegree}[/tex]
Making x the subject of the formula then
[tex]x=sin^{-1}(\frac {27\ sin\ 74^{\circ}}{26}\approx 86.59^{\circ}[/tex]
12.
[tex]\frac{12}{Sin \ 34\textdegree}=\frac{19}{Sin \ x\textdegree}[/tex]
Making x the subject of the formula then
[tex]x=sin^{-1}(\frac {19\ sin\ 34^{\circ}}{12}\approx 62.30^{\circ}[/tex]
13.
[tex]\frac{30}{Sin \ 91\textdegree}=\frac{17}{Sin \ B\textdegree}[/tex]
Making x the subject of the formula then
[tex]x=sin^{-1}(\frac {17\ sin\ 91^{\circ}}{30}\approx 34.51^{\circ}[/tex]
14.
[tex]\frac{25}{Sin \ 49\textdegree}=\frac{26}{Sin \ x\textdegree}[/tex]
Making x the subject of the formula then
[tex]x=sin^{-1}(\frac {26\ sin\ 49^{\circ}}{25}\approx 51.71^{\circ}[/tex]
15.
[tex]\frac{45}{Sin \ 119\textdegree}=\frac{20}{Sin \ x\textdegree}[/tex]
Making x the subject of the formula then
[tex]x=Sin^{-1}(\frac{20\ Sin \ 119\textdegree}{45})\approx22.87\textdegree[/tex]
16.
[tex]\frac{11}{Sin \ 105\textdegree}=\frac{8}{Sin \ x\textdegree}[/tex]
Making x the subject of the formula then
[tex]x=sin^{-1}(\frac {8\ sin\ 105^{\circ}}{11}\approx 44.63^{\circ}[/tex]
The Sine Law is a mathematical formula in trigonometry that summarizes the length of a triangle's sides and the magnitude of its angles in a calculation expression: If you divide the length of a side by sine to the opposite angle, you get the same ratio for all three "pairs" of sides and opposite angles.
The formula can be used to find either side lengths or angles in a triangle by making an equation out of two of the three fractions, and isolating either a side or an angle on one side of the equals sign.
Learn more in https://brainly.com/question/12652434