During laparoscopic surgery, carbon dioxide gas is used to expand the abdomen to help create a larger working space.


If 4.40 L of CO2 gas at 19 ∘C at 783 mmHg is used, what is the final volume, in liters, of the gas at 37 ∘C and a pressure of 735 mmHg, if the amount of CO2 does not change?

Express your answer with the appropriate units.

Respuesta :

Answer:

The answer to your question is     V2 = 4.97 l

Explanation:

Data

Volume 1 = V1 = 4.40 L                    Volume 2 =

Temperature 1 = T1 = 19°C               Temperature 2 = T2 = 37°C

Pressure 1 = P1 = 783 mmHg           Pressure 2 = 735 mmHg

Process

1.- Convert temperature to °K

T1 = 19 + 273 = 292°K

T2 = 37 + 273 = 310°K

2.- Use the combined gas law to solve this problem

                  P1V1/T1  = P2V2/T2

-Solve for V2

                  V2 = P1V1T2 / T1P2

-Substitution

                  V2 = (783 x 4.40 x 310) / (292 x 735)

-Simplification

                 V2 = 1068012 / 214620

-Result

                 V2 = 4.97 l

The final volume, in liters, of the gas is 4.98 L

From the question,

We are to determine the final volume of the gas.

Using the combined gas law formula,

[tex]\frac{P_{1}V_{1} }{T_{1}}= \frac{P_{2}V_{2}}{T_{2}}[/tex]

Where

P₁ is the initial pressure

V₁ is the initial volume

T₁ is the initial temperature

P₂ is the final pressure

V₂ is the final volume

and T₂ is the final temperature

From the given information

P₁ = 783 mmHg

V₁ = 4.40 L

T₁ = 19 °C = 273.15 + 19 = 292.15 K

P₂ = 735 mmHg

T₂ = 37 °C = 273.15 + 37 = 310.15 K

Putting the parameters into the formula, we get

[tex]\frac{783 \times 4.40}{292.15}= \frac{735 \times V_{2}}{310.15}[/tex]

Then,

[tex]V_{2} = \frac{783 \times 4.40 \times 310.15}{735 \times 292.15}[/tex]

[tex]V_{2} = \frac{1068528.78}{214730.25}[/tex]

[tex]V_{2} = 4.98 \ L[/tex]

Hence, the final volume, in liters, of the gas is 4.98 L

Learn more here: https://brainly.com/question/23533752

Q&A Education