Answer:
1.15°
Explanation:
The width of slit, angle of interference and wavelength are related with the formula
[tex]wsin\theta=m\lambda[/tex]
and making
[tex]\theta[/tex] the subject of formula we get
[tex]\theta=sin^{-1}(\frac {m\lambda}{w})[/tex]
Where
[tex]\theta[/tex] is the angle where the first interference occurs, w is width,
[tex]\lambda[/tex] is the wavelength
Substituting 1 for m, [tex]232*10^{-5} m[/tex] for w and [tex]465*10^{-9} m[/tex] for [tex]\lambda[/tex]
[tex]\theta=sin^{-1}(\frac {1*465\times 10^{-9}}{232\times 10^{-5}})=1.14846213920053^{\circ}[/tex]
Therefore, rounded off, the angle is approximately 1.15°