Light of wavelength 465 nm passes through a single slit of width 2.32*10^-5 m. At what angle does the first interference minimum (m=1) occur?

Respuesta :

Answer:

1.15°

Explanation:

The width of slit,  angle of interference and wavelength are related with the formula

[tex]wsin\theta=m\lambda[/tex]

and making

[tex]\theta[/tex]  the subject of formula we get

[tex]\theta=sin^{-1}(\frac {m\lambda}{w})[/tex]

Where

[tex]\theta[/tex]  is the angle where the first interference occurs,  w is width,

 [tex]\lambda[/tex] is the wavelength

Substituting 1 for m,  [tex]232*10^{-5} m[/tex] for w and [tex]465*10^{-9} m[/tex]  for [tex]\lambda[/tex]

[tex]\theta=sin^{-1}(\frac {1*465\times 10^{-9}}{232\times 10^{-5}})=1.14846213920053^{\circ}[/tex]

Therefore,  rounded off,  the angle is approximately 1.15°

Q&A Education