Respuesta :
It's Diophantine equation.
First, we need to found gcd(6,(-2)):
6=2*3
(-2)=(-1)*2
So, gcd(6,-2)=2
Now, the question is. Can we dived c=24, by gcd(6,-2) and in the end get integer?
Yes we can.
[tex] \frac{24}{2} =12[/tex]
So, we can solve it.
Now is the formula:
[tex]{\displaystyle {\begin{cases}x=x_{0}+n{\frac {b}{\gcd(a,\;b)}}\\y=y_{0}-n{\frac {a}{\gcd(a,\;b)}}\end{cases}}\quad n\in \mathbb {Z} .}[/tex]
Second, we need the first pair (x0,y0)
if
x=0
then
[tex]y=(-12)[/tex]
Third, we gonna use that formula:
[tex]{\displaystyle {\begin{cases}x=-n}\\y=-3(4+n)}\end{case}\quad n\in \mathbb {Z} .}[/tex]
Congratulations! We solve it.
First, we need to found gcd(6,(-2)):
6=2*3
(-2)=(-1)*2
So, gcd(6,-2)=2
Now, the question is. Can we dived c=24, by gcd(6,-2) and in the end get integer?
Yes we can.
[tex] \frac{24}{2} =12[/tex]
So, we can solve it.
Now is the formula:
[tex]{\displaystyle {\begin{cases}x=x_{0}+n{\frac {b}{\gcd(a,\;b)}}\\y=y_{0}-n{\frac {a}{\gcd(a,\;b)}}\end{cases}}\quad n\in \mathbb {Z} .}[/tex]
Second, we need the first pair (x0,y0)
if
x=0
then
[tex]y=(-12)[/tex]
Third, we gonna use that formula:
[tex]{\displaystyle {\begin{cases}x=-n}\\y=-3(4+n)}\end{case}\quad n\in \mathbb {Z} .}[/tex]
Congratulations! We solve it.
6x - 2y = 24
-2y = 24 - 6x Multiply both sides by -1
2y = 6x - 24 Divide both sides by 2
y = (6x - 24)/2
y = 6x/2 - 24/2
y = 3x - 12
-2y = 24 - 6x Multiply both sides by -1
2y = 6x - 24 Divide both sides by 2
y = (6x - 24)/2
y = 6x/2 - 24/2
y = 3x - 12