Find the circumference and area of a circle with a diameter of 22 inches. Leave your answers in terms of pi. a. C = 11π; A = 44π. b. C = 22π; A = 44π. c. C = 11π; A = 121π. d. C = 22π; A = 121π

Respuesta :

The area (A) and circumference (C) of a circle may be calculated by the equations,
                          A = πD² / 4     ;           C = πD
Substituting the known diameter gives,
                         A = π(22 in)² / 4           C = π(22)
Simplifying gives an answer of,
                        A = 121 π in²                 C = 22π in
Therefore, the answer is letter D.

Answer:

Option d is correct

C = 22π inches and  A = 121π square inches

Step-by-step explanation:

Circumference(C) and Area(A) of a circle is given by:

[tex]C = 2 \pi r[/tex]

[tex]A = \pi r^2[/tex]

where, r is the radius of the circle.

As per the statement:

A diameter of circle is 22 inches.

We know that:

Diameter = 2(radius(r))

⇒[tex]22= 2r[/tex]

⇒r = 11 inches

Substitute the given values we have;

[tex]C = 2 \pi \cdot 11 = 22 \pi[/tex] inches

[tex]A = \pi \cdot (11)^2 = 121 \pi[/tex] square inches

Therefore, the circumference and area of a circle are:

C = 22π inches and  A = 121π square inches

Q&A Education