Respuesta :
We are given with the function (sinx)/(1 + sinx). To simplify the equation, we multiply the denominator with its conjugate. Hence the expression becomes (sinx)(1-sin x )/(1 + sinx)(1-sin x). Then we convert the expression into (sinx)(1-sin x )/ cos^2 x. Using trigonometric functions, we can then simplify the expression.
Answer:
[tex]\frac{sinx(1-sinx)}{(1+sinx)(1-sinx)}[/tex]
Step-by-step explanation:
[tex]\frac{sinx}{1+sinx}[/tex]
To simplify the denominator part we multiply 1+sinx by its conjugate
The conjugate of 1+ sinx is 1-sinx
Multiply both top and bottom by 1-sinx
[tex]\frac{sinx(1-sinx)}{(1+sinx)(1-sinx)}[/tex]
So the acceptable first step in simplifying the expression is multiply by its conjugate at the top and bottom