Suppose 0 is an angle in the standard position whose terminal side is in Quadrant IV and cot0= -6/7 Find the exact values of the five remaining trigonometric functions of 0

Respuesta :

[tex]\sin \theta=\dfrac{p}{h} =\dfrac{-7}{\sqrt{85} }[/tex], [tex]\cos \theta=\dfrac{b}{h} =\dfrac{6}{\sqrt{85}}[/tex], [tex]\tan \theta=\dfrac{p}{b} =\dfrac{-7}{6}[/tex],

[tex]\sec \theta=\dfrac{h}{b} =\dfrac{\sqrt{85} }{6}[/tex] and [tex]\csc \theta=\dfrac{h}{p} =\dfrac{-\sqrt{85}}{ 7}[/tex]

Explanation:

Given,

[tex]\cot \theta= \dfrac{-6}{7}[/tex]

To find, the exact values of the five remaining trigonometric functions of [tex]\theta[/tex] = ?

We know that,

[tex]\cot \theta= \dfrac{-6}{7}=\dfrac{b}{p}[/tex]

Where, b = base and p = perpendicular

By Pythagoras's theorem,

Hypotaneous, [tex]h=\sqrt{p^2+b^2}[/tex]

[tex]=\sqrt{(-6)^2+7^2}=\sqrt{36+49} =\sqrt{85}[/tex]

In IVth quadrant,

[tex]\cot \theta[/tex] and [tex]\sec \theta[/tex] are positive.

[tex]\sin \theta=\dfrac{p}{h} =\dfrac{-7}{\sqrt{85} }[/tex], [tex]\cos \theta=\dfrac{b}{h} =\dfrac{6}{\sqrt{85}}[/tex], [tex]\tan \theta=\dfrac{p}{b} =\dfrac{-7}{6}[/tex],

[tex]\sec \theta=\dfrac{h}{b} =\dfrac{\sqrt{85} }{6}[/tex] and [tex]\csc \theta=\dfrac{h}{p} =\dfrac{-\sqrt{85}}{ 7}[/tex]

Q&A Education