Respuesta :
Answer:
28.57%
Explanation:
Given that:
[tex]DO_{sat}[/tex] = 10.0 mg/L
[tex]DO_{min}[/tex] = Â 3.0 mg/L
We can calculate for the Original maximum deficit can be calculated which can be illustrated as follows:
[tex]DO_{max} = DO_{sat}-DO_{min}[/tex]
where;
[tex]DO_{max}[/tex] represents the maximum dissolved oxygen
[tex]DO_{sat}[/tex] represents the saturated dissolved oxygen
[tex]DO_{min}[/tex] represents the minimum dissolved oxygen
[tex]DO_{max}[/tex] = 10.0 mg/L - 3.0 mg/L
[tex]DO_{max}[/tex] = 7.0 mg/L
We can also calculate the Desired maximum deficit by using the above expression:
[tex]DO_{max} = DO_{sat}-DO_{min}[/tex]
In which ;
[tex]DO_{sat}[/tex] = 10.0 mg/L
[tex]DO_{min}[/tex] = Â 5.0 mg/L
Now that  we have all we need to replace the value; we have:
[tex]DO_{max}[/tex] = 10.0 mg/L - 5.0 mg/L
[tex]DO_{max}[/tex] = 5.0 mg/L
Finally, the percentage needed by the BOD for removing the waste can be determined using the following expression;
percentage = [tex](\frac{desired DO_{max}}{Original DO_{max}}) *100[/tex]%
where;
Desired [tex]DO_{max}[/tex] Â = Â 5.0 mg/L
Original  [tex]DO_{max}[/tex]  =  7.0 mg/L
Then we have;
percentage = [tex]\frac{5.0}{7.0}*100[/tex]%
=71.43%
Required BOD = 100% - 71.43%
Required BOD = 28.57%
Hence, The percentage necessary for the BOD of the plant waste to be reduced to assure a healthy stream with at least 5.0 mg/L DO everywhere = 28.57%