Respuesta :

Option D: [tex]y=-\frac{1}{2} x+4[/tex] is the equation of line

Explanation:

The equation of the line is perpendicular to the line [tex]y-12=2 x-8[/tex] and that passes through the point [tex](2,3)[/tex]

We need to determine the equation of the line.

First, let us determine the slope of the equation.

Since, the equation is perpendicular to the line [tex]y-12=2 x-8[/tex], the slope is [tex]m=2[/tex]

Since, the lines are perpendicular, we have,

[tex]m=-\frac{1}{2}[/tex]

Now, we shall substitute the slope [tex]m=-\frac{1}{2}[/tex] and the point [tex](2,3)[/tex] in the slope - point formula, we have,

[tex]y-y_1=m(x-x_1)[/tex]

[tex]y-3=-\frac{1}{2} (x-2)[/tex]

[tex]y-3=-\frac{1}{2} x+1[/tex]

Hence, writing this equation in slope - intercept form, we have,

[tex]y=-\frac{1}{2} x+1+3[/tex]

[tex]y=-\frac{1}{2} x+4[/tex]

Thus, the equation of the line is [tex]y=-\frac{1}{2} x+4[/tex]

Therefore, Option D is the correct answer.

Q&A Education