Answer:
[tex]\hat{i} + 3.0 \hat{j} - 10 \hat{k}[/tex]
Explanation:
The final position is given by [tex]\vec{r} = 3.0 \hat{i} - 4.0 \hat{k}[/tex]
The displacement is
[tex]\nabla\vec{r} = 2.0\hat{i} - 3.0 \hat{j} + 6\hat{k}[/tex]
The initial position is given by
[tex]\vec{r} - \vec{p} = \nabla\vec{r}[/tex]
[tex]\vec{p} = \vec{r} - \nabla\vec{r}[/tex]
[tex]\vec{p} = 3\hat{i} - 4.0 \hat{k} - (2\hat{i} - 3\hat{j} + 6\hat{k})[/tex]
[tex]\vec{p} = \hat{i} + 3.0 \hat{j} - 10 \hat{k}[/tex]