Solve the given differential equation by using an appropriate substitution. The DE is of the form dy/dx = f(Ax + By + C), which is given in (5) of Section 2.5. dy/dx = tan2(x + y)

Respuesta :

[tex]\dfrac{\mathrm dy}{\mathrm dx}=\tan^2(x+y)[/tex]

Let [tex]v=x+y[/tex], so that [tex]\frac{\mathrm dv}{\mathrm dx}=1+\frac{\mathrm dy}{\mathrm dx}[/tex]:

[tex]\dfrac{\mathrm dv}{\mathrm dx}-1=\tan^2v[/tex]

Recall that [tex]\tan^2v+1=\sec^2v[/tex]:

[tex]\dfrac{\mathrm dv}{\mathrm dx}=\sec^2v[/tex]

Separate the variables and integrate both sides:

[tex]\cos^2v\,\mathrm dv=\mathrm dx[/tex]

[tex]\dfrac v2+\dfrac{\sin(2v)}4=x+C[/tex]

Solve in terms of [tex]y[/tex]:

[tex]\dfrac{x+y}2+\dfrac{\sin(2x+2y)}4=x+C[/tex]

Q&A Education