Consider the curve y = x − x3. (a) Find the slope of the tangent line to the curve at the point (1, 0). (b) Find an equation of the tangent line in part (a).

Respuesta :

Answer:

a) mt = -2

b) y=2-2x

Step-by-step explanation:

We have [tex]y=x-x^{3}[/tex]  ⇒  [tex]f(x)=x-x^{3}[/tex] and we must find

a) The slope of the tangent line to the curve at the point (1,0)

b) The equation of the tangent line in part (a)

a) [tex]f(x)=x-x^{3}[/tex] with the point (1,0) then f'(x) [tex]=1-3x^{2}[/tex] the slope (mt) in x=1 is

f'(1)=[tex]1-3(1^{2})=1-3=-2[/tex]  ,  m t= -2

b) mt=-2 at the point (1,0), knowing that the pending point model  is:

[tex]y-y_{1}=m(x-x_{1})[/tex], we solve y-0 = -2(x-1) ⇒ y=-2x+2

Ver imagen prozehus
Q&A Education