The aurora is caused when electrons and protons, moving in the earth's magnetic field of ≈5×10−5 T, collide with molecules of the atmosphere and cause them to glow. What is the radius of the circular orbit for (a) an electron with speed 1.0×106m/s and (b) a proton with speed 7.0×104m/s. What is re in meters and what is rp in meters?

Respuesta :

Hagrid
The correct answer to this question is

You can use this equation.
f = m v^2 / r
f = q B v 

r = m v^2 / q B v = m v / q B = 

(a) an electron 9.109×10^-31 * 4.0×10^6 m/s / 1.602×10^-19 * 5.5*10^-5 T = 0.4135 m 
(b) a proton 1.673×10^-27 * 7.0×10^4 m/s ./ 1.602×10^-19 * 5.5×10^-5 T = 13.29 m

Answer:

a) 0.114 meters is the radius of the circular orbit for an electron with given speed.

b) 14.6 meters is the radius of the circular orbit for a proton with given speed.

Explanation:

Force on the charge particle :

[tex] F = qvB[/tex]

Since, the particle is revolving around in a circular path ;

[tex]F'=\frac{mv^2}{r}[/tex]

particle in constantly moving in circular path under action of magnetic field:

F = F'

[tex]qvB=\frac{mv^2}{r}[/tex]

[tex]r=\frac{mv}{qB}[/tex]

Where :

r = radius of the circular path

m = mass of the particle

v = velocity of the particle

B = magnetic field

q = magnitude of  charge on the particle

a)  Velocity of the electron =  [tex]v=1.0\times 10^6 m/s[/tex]

Mass of electron = m = [tex]9.11\times 10^{-31} kg[/tex]

Charge on an electron , q= [tex]1.602\times 10^{-19} C[/tex]

B = [tex]5\times 10^{-5} T[/tex]

Radius of the circular orbit for an electron with given speed =[tex]r_e[/tex]

[tex]r_e=\frac{9.11\times 10^{-31} kg\times 1.0\times 10^6 m/s}{1.602\times 10^{-19} C\times 5\times 10^{-5} T}[/tex]

[tex]r_e = 0.114 m[/tex]

0.114 meters is the radius of the circular orbit for an electron with given speed.

b)  Velocity of the proton =  [tex]v=7.0\times 10^4 m/s[/tex]

Mass of electron = m = [tex]1.67\times 10^{-27} kg[/tex]

Charge on an electron , q= [tex]1.602\times 10^{-19} C[/tex]

B = [tex]5\times 10^{-5} T[/tex]

Radius of the circular orbit for a proton with given speed =[tex]r_p[/tex]

[tex]r_e=\frac{1.67\times 10^{-27} kg\times 7.0\times 10^4 m/s}{1.602\times 10^{-19} C\times 5\times 10^{-5} T}[/tex]

[tex]r_p = 14.6 m[/tex]

14.6 meters is the radius of the circular orbit for a proton with given speed.

Q&A Education