makalaw
contestada

How do you determine the base when solving for x by converting to a log?

The answer was supposed to be

x= ln(3/2) / 4ln(1.0125)

why is it ln?​

How do you determine the base when solving for x by converting to a logThe answer was supposed to bex ln32 4ln10125why is it ln class=

Respuesta :

[tex]$x=\frac{\ln \left(\frac{3}{2}\right)}{4 \ln (1.0125)}[/tex]

Solution:

Given expression:

[tex]$(1.0125)^{4 x}=\frac{3}{2}[/tex]

To solve the expression:

[tex]$(1.0125)^{4 x}=\frac{3}{2}[/tex]

If f(x) = g(x) then ln(f(x)) = ln(g(x)).

Using the above condition, we can write

[tex]$\ln \left(1.0125^{4 x}\right)=\ln \left(\frac{3}{2}\right)[/tex]

Apply log rule: [tex]\log _{a}\left(x^{b}\right)=b \cdot \log _{a}(x)[/tex]

[tex]$4 x \ln (1.0125)=\ln \left(\frac{3}{2}\right)[/tex]

Divide both side of the equation by [tex]4 \ln (1.0125)[/tex].

[tex]$\frac{4 x \ln (1.0125)}{4 \ln (1.0125)}=\frac{\ln \left(\frac{3}{2}\right)}{4 \ln (1.0125)}[/tex]

[tex]$x=\frac{\ln \left(\frac{3}{2}\right)}{4 \ln (1.0125)}[/tex]

The answer is [tex]x=\frac{\ln \left(\frac{3}{2}\right)}{4 \ln (1.0125)}[/tex].

Q&A Education