Respuesta :

Recall the fundamental rule of trig:

[tex]\sin^2(x)+\cos^2(x)=1 \quad\forall x \in \mathbb{R}[/tex]

So, there exists an angle [tex]t[/tex] such that

[tex](0.6,0.35)=(\sin(t),\cos(t))[/tex]

if and only if

[tex]\sin^2(t)+\cos^2(t)=0.6^2+0.35^2=1[/tex]

Working out the numbers, we get

[tex]0.6^2+0.35^2=0.36+0.1225=0.4825\neq 1[/tex]

So, there doesn't exist a number [tex]t[/tex] such that

[tex](0.6,0.35)=(\sin(t),\cos(t))[/tex]

Q&A Education