Recall the fundamental rule of trig:
[tex]\sin^2(x)+\cos^2(x)=1 \quad\forall x \in \mathbb{R}[/tex]
So, there exists an angle [tex]t[/tex] such that
[tex](0.6,0.35)=(\sin(t),\cos(t))[/tex]
if and only if
[tex]\sin^2(t)+\cos^2(t)=0.6^2+0.35^2=1[/tex]
Working out the numbers, we get
[tex]0.6^2+0.35^2=0.36+0.1225=0.4825\neq 1[/tex]
So, there doesn't exist a number [tex]t[/tex] such that
[tex](0.6,0.35)=(\sin(t),\cos(t))[/tex]