10. A satellites is in a circular orbit around the earth at a height of 360 km above the earth’s surface. What is its time period? What is its orbital speed?

Respuesta :

Answer:

Orbital speed=8102.39m/s

Time period=2935.98seconds

Explanation:

For the satellite to be in a stable orbit at a height, h, its centripetal acceleration V2R+h must equal the acceleration due to gravity at that distance from the center of the earth g(R2(R+h)2)

V2R+h=g(R2(R+h)2)

V=√g(R2R+h)

V= sqrt(9.8 × (6371000)^2/(6371000+360000)

V= sqrt(9.8× (4.059×10^13/6731000)

V=sqrt(65648789.18)

V= 8102.39m/s

Time period ,T= sqrt(4× pi×R^3)/(G× Mcentral)

T= sqrt(4×3.142×(6.47×10^6)^3/(6.673×10^-11)×(5.98×10^24)

T=sqrt(3.40×10^21)/ (3.99×10^14)

T= sqrt(0.862×10^7)

T= 2935.98seconds

Q&A Education