Respuesta :
Answer:
$12,884.08
Step-by-step explanation:
Assuming that interest is compounded annually, the future value of an invested amount 'P', at an interest rate 'r' for a period of 'n' years is given by the following equation:
[tex]FV = P*(1+r)^n[/tex]
Therefore, an investment of $8,000 at a rate of 10% per year for 5 years has a future value of:
[tex]FV = 8,000*(1+0.1)^5\\FV=\$12,884.08[/tex]
There will be $12,884.08 in the account after 5 years.
Answer:
Step-by-step explanation:
Assuming the interest was compounded annually, we would apply would apply the formula for determining compound interest which is expressed as
A = P(1+r/n)^nt
Where
A = total amount in the account at the end of t years
r represents the interest rate.
n represents the periodic interval at which it was compounded.
P represents the principal or initial amount deposited
From the information given,
P = 8000
r = 10% = 10/100 = 0.1
n = 1 because it was compounded ince in a year.
t = 5 years
Therefore,
A = 8000(1+0.1/1)^1 × 5
A = 8000(1.1)^5
A = $12884.1