Respuesta :
Answer:
Option as B is correct At the same speed as before
Explanation:
As we know the relation between speed of the wave and tension in string
The speed of wave in stretched string
ν = [tex]\sqrt{\frac{T}{\mu} }[/tex]
speed of wave is the directly proportional to the square root of tension as mentioned in question tension of string is unaffected when in linear mass density is constant, so we can say that the speed of wave will be the same
Option as B is correct At the same speed as before
If you suddenly begin to wiggle more rapidly without appreciably affecting the tension, you will cause the waves to move down the string at the same speed as before (Option b).
What is a wave?
A wave can be defined as a type of disturbance that contains energy independently of particle motion.
- The wave can move at a velocity (frequency) that is directly proportional to the tension.
- In this case, tension is constant, thereby velocity of the wave will remain constant.
In conclusion, if you suddenly begin to wiggle more rapidly without appreciably affecting the tension, you will cause the waves to move down the string at the same speed as before (Option b).
Learn more in:
https://brainly.com/question/12215474