Respuesta :
The question is incomplete. complete question is;
A 0.10 mol sample of each of the four species in the reaction represented above is injected into a rigid, previously evacuated 1.0 L container. Which of the following species will have the highest concentration when the system reaches equilibrium?
[tex]2H_2S+CH_4\rightleftharpoons CS_2(g)+4H_2(g)[/tex]
[tex]K_c=3.4\times 10^{-4}[/tex]
a.[tex]H_2S(g) [/tex]
b.[tex]CH_4(g) [/tex]
c.[tex]CS_2(g) [/tex]
d.[tex]H_2(g)[/tex]
Answer:
The correct answer is option a.
Explanation:
[tex]2H_2S+CH_4\rightleftharpoons CS_2(g)+4H_2(g)[/tex]
The equilibrium constant of the reaction= [tex]K_c=3.4\times 10^{-4}[/tex]
Concentration of the species initially:
[tex][H_2S]=\frac{0.10 mol}{1.0 L}=0.10 M[/tex]
[tex][CH_4]=\frac{0.10 mol}{1.0 L}=0.10 M[/tex]
[tex][CS_2]=\frac{0.10 mol}{1.0 L}=0.10 M[/tex]
[tex][H_2]=\frac{0.10 mol}{1.0 L}=0.10 M[/tex]
The equilibrium quotient of the reaction is :
[tex]Q_c=\frac{[CS_2][H_2]^4}{[H_2S]^2[CH_4]}[/tex]
[tex]=\frac{(0.10M)(0.10 M)^4}{(0.10 M)^2(0.10 M)}=0.01[/tex]
[tex]Q_c>K_c[/tex] (reaction will go backward)
[tex]2H_2S+CH_4\rightleftharpoons CS_2(g)+4H_2(g)[/tex]
Initially
0.10 M 0.10 M 0.10 M 0.10 M
At Equilibrium :
(0.10+2x) M (0.10+x) M (0.10-x) M (0.10-4x) M
[tex]K_c=\frac{[CS_2][H_2]^4}{[H_2S]^2[CH_4]}[/tex]
[tex]3.4\times 10^{-4}=\frac{(0.10-x)(0.10-4x)^4}{(0.10+2x)^2(0.10+x)}[/tex]
Solving formx:
x = 0.099 M
As we can see that from the reaction at equilibrium, the concentration of hydrogen sulfide will be highest:
[tex]=[H_2S]=(0.10+2x) M=(0.10+2\times 0.099) M=0.298 M[/tex]
The highest concentration at equilibrium has been of hydrogen sulfide. Thus, option A is correct.
The moles of reactants in the reaction has been 0.10 mol for each reactant. The balanced equation for the reaction has been:
[tex]\rm 2\;H_2S\;+\;CH_4\;\leftrightharpoons CS_2\;+\;4\;H_2[/tex]
The equilibrium quotient Q, for the reaction, has been given as:
[tex]Q=\dfrac{[CS_2]\;[H_2]^4}{[H_2S]^2\;[CH_4]}[/tex]
Computation for Equilibrium quotient :
The equilibrium concentration of the reaction has been given in the image attached.
The initial value of equilibrium quotient, Qi has been:
[tex]Q_i=\dfrac{[0.1]\;\times\;[0.1]^4}{[0.1]^2\;[0.1]} \\Q_i=0.01[/tex]
The initial value of equilibrium quotient has been 0.01.
The equilibrium quotient, Ke value for equilibrium concentration:
[tex]3.4\;\times\;10 ^-^4=\dfrac{[0.10-x]\;[0.10-4x]^4}{[0.10+2x]^2\;[0.10 +x]} \\x=0.099\;M[/tex]
The concentration of compounds at equilibrium has been highest for hydrogen sulfide that is 0.298 M.
Thus, the highest concentration at equilibrium has been of hydrogen sulfide. Thus, option A is correct.
For more information about equilibrium concentration, refer to the link:
https://brainly.com/question/7949757