**A rock dropped from a 100 foot tower.

The height of the rock as a function of time

can be modeled by the equation: h(t) =

- 16t2 + 10t + 100. How long does it take

for the rock to reach the ground?

Respuesta :

Answer:

2.83 s

Step-by-step explanation:

We are given that

[tex]h(t)=-16t^2+10t+100[/tex]

When a rock reached the ground then h(t)=0

[tex]-16t^2+10t+100=0[/tex]

[tex]16t^2-10t-100=0[/tex]

Using quadratic formula

[tex]x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}[/tex]

[tex]t=\frac{10\pm\sqrt{(-10)^2-4\times 16\times (-100)}}{2(16)}[/tex]

[tex]t=\frac{10\pm\sqrt{100+6400}}{32}[/tex]

[tex]t=\frac{10+\sqrt{6500}}{32}=2.83[/tex]

[tex]t=\frac{10-\sqrt{6500}}{32}=-2.2[/tex]

Time cannot be negative .Therefore, negative value of t can not be possible.

Hence, the rock takes 2.83 sec to reach the ground.

Q&A Education