During a long jump, an Olympic champion's center of mass rose about 1.2 m from the launch point to the top of the arc. 1) What minimum speed did he need at launch if he was traveling at 6.7 m/s at the top of the arc

Respuesta :

Answer:

1) [tex]v_{A} \approx 8.272\,\frac{m}{s}[/tex]

Explanation:

1) Let assume that the campion begins running at a height of zero. The movement of the Olympic champion is modelled after the Principle of Energy Conservation:

[tex]K_{A} = K_{B} + U_{g,B}[/tex]

[tex]\frac{1}{2}\cdot m \cdot v_{A}^{2} = \frac{1}{2}\cdot m \cdot v_{B}^{2} + m \cdot g \cdot h_{B}[/tex]

[tex]\frac{1}{2} \cdot v_{A}^{2} = \frac{1}{2} \cdot v_{B}^{2} + g \cdot h_{B}[/tex]

The minimum speed is obtained herein:

[tex]v_{A}=\sqrt{v_{B}^{2} + 2 \cdot g \cdot h}[/tex]

[tex]v_{A} = \sqrt{(6.7\,\frac{m}{s} )^{2}+2\cdot (9.807\,\frac{m}{s^{2}} )\cdot (1.2\,m)}[/tex]

[tex]v_{A} \approx 8.272\,\frac{m}{s}[/tex]

The minimum speed he need at launch point is [tex]8.27m/s[/tex]

Energy conservation :

Energy is neither be created nor be destroyed just change into one form to another form.

              [tex]\frac{1}{2}mv^{2} =\frac{1}{2}mv_{a}^{2} +mgh\\ \\v=\sqrt{v_{a}^{2}+2gh }[/tex]

Where,

  • [tex]v[/tex] is velocity at launch.
  • [tex]v_{a}[/tex] is velocity at the top of the arc
  • [tex]g[/tex] is gravitational acceleration, [tex]g=9.8m/s^{2}[/tex]
  • [tex]h[/tex] is height of center of mass.

Given that, [tex]v_{a}=6.7m/s,h=1.2m,g=9.8m/s^{2}[/tex]

Substitute all values in above relation.

             [tex]v=\sqrt{(6.7)^{2}+2*9.8*1.2 } \\\\v=\sqrt{68.41}=8.27m/s[/tex]

Learn more about the center of mass here:

https://brainly.com/question/874205

Q&A Education