Calculate the equilibrium concentration of H 3 O H3O in a 0.20 M M solution of oxalic acid. Express your answer to two significant figures and include the appropriate units.

Respuesta :

Answer: The equilibrium concentration of [tex]H_3O^+[/tex] ion is [tex]8.3064\times 10^{-2}M[/tex]

Explanation:

We are given:

Molarity of oxalic acid solution = 0.20 M

Oxalic acid [tex](H_2C_2O_4)[/tex] is a weak acid and will dissociate 2 hydrogen ions.

  • The chemical equation for the first dissociation of oxalic acid follows:

               [tex]H_2C_2O_4(aq.)+H_2O\rightleftharpoons H_3O^+(aq.)+HC_2O_4^-(aq.)[/tex]

Initial:        0.20

At eqllm:    0.20-x                            x                 x

The expression of first equilibrium constant equation follows:

[tex]Ka_1=\frac{[H_3O^+][HC_2O_4^{-}]}{[H_2C_2O_4]}[/tex]

We know that:

[tex]Ka_1\text{ for }H_2C_2O_4=0.059[/tex]

Putting values in above equation, we get:

[tex]0.059=\frac{x\times x}{(0.20-x)}\\\\x=-0.142,0.083[/tex]

Neglecting the negative value of 'x', because concentration cannot be negative.

So, equilibrium concentration of hydronium ion = x = 0.083 M

  • The chemical equation for the second dissociation of oxalic acid:

                 [tex]HC_2O_4^-(aq.)+H_2O\rightarrow H_3O^+(aq.)+C_2O_4^{2-}(aq.)[/tex]

Initial:         0.083  

At eqllm:    0.083-y                      0.083+y               y

The expression of second equilibrium constant equation follows:

[tex]Ka_2=\frac{[H_3O^+][C_2O_4^{2-}]}{[HC_2O_4^-]}[/tex]

We know that:

[tex]Ka_2\text{ for }H_2C_2O_4=6.4\times 10^{-5}[/tex]

Putting values in above equation, we get:

[tex]6.4\times 10^{-5}=\frac{(0.083+y)\times y}{(0.083-y)}\\\\y=-0.083,0.0000639[/tex]

Neglecting the negative value of 'x', because concentration cannot be negative.

So, equilibrium concentration of hydronium ion = y = 0.0000639 M

Total concentration of hydronium ion = [x + y] = [0.083 + 0.0000639] = 0.0830639 M

Hence, the equilibrium concentration of [tex]H_3O^+[/tex] ion is [tex]8.3064\times 10^{-2}M[/tex]

Q&A Education