Answer:
[tex]Q=1.22\times 10^{4}\ J.[/tex]
Explanation:
Given :
Temperature of gas , [tex]T=22^o\ C =295\ K.[/tex]
Work done on the gas to compress it , [tex]W = -353 \ J.[/tex]
Final temperature , [tex]T_f=145^o\ C= 418\ K.[/tex]
No of moles , n = 8.2 moles.
We know, by first law of thermodynamics ,
[tex]Q=\Delta U+W\\\\Q=nC_v\Delta T+W[/tex]
( The gas is mono atomic so , [tex]C_v=\dfrac{3}{2}R[/tex] Here R is universal gas constant [tex]8.314\ J\ K^{-1}\ mol^{-1}[/tex])
Putting all values in above equation
We get ,
[tex]Q=(8.2 \times \dfrac{3}{2}\times 8.314 \times 123)+(-353)\\\\Q=12225\ J=1.22\times 10^{4}\ J.[/tex]
Since, Q is positive . Therefore , heat is flowing inside the cylinder.
Hence , this is the required solution.