Which expression can be used to approximate the expression below, for all positive numbers a, b, and x, where a. 1 and b.
1?
log,
logo
logna
logna
logo
log,
log,b
logo
logo
Save and
Next
Submit

Which expression can be used to approximate the expression below for all positive numbers a b and x where a 1 and b 1 log logo logna logna logo log logb logo lo class=

Respuesta :

The required "option A) [tex]\dfrac{\log_{b}x}{\log_{b}a}[/tex]" is correct.

Step-by-step explanation:

We have,

[tex]\log _{a}x[/tex]

To find, the value of [tex]\log _{a}x[/tex] = ?

∴ [tex]\log _{a}x[/tex] , where a, b  and x are positive

a ≠ 1 and b ≠ 1

We know that,

The logarithm identity,

[tex]\log_{p}m=\dfrac{\log_{y}m}{\log_{y}p}[/tex]

∴ [tex]\log _{a}x[/tex] = [tex]\dfrac{\log_{b}x}{\log_{b}a}[/tex]

Where, b is the common base of logarithm

The value of [tex]\log _{a}x[/tex] = [tex]\dfrac{\log_{b}x}{\log_{b}a}[/tex]

Thus, the required option A) [tex]\dfrac{\log_{b}x}{\log_{b}a}[/tex] is correct.

brekv

Answer:it’s A

Step-by-step explanation: I took the quiz

Q&A Education