The required "option A) [tex]\dfrac{\log_{b}x}{\log_{b}a}[/tex]" is correct.
Step-by-step explanation:
We have,
[tex]\log _{a}x[/tex]
To find, the value of [tex]\log _{a}x[/tex] = ?
∴ [tex]\log _{a}x[/tex] , where a, b and x are positive
a ≠ 1 and b ≠ 1
We know that,
The logarithm identity,
[tex]\log_{p}m=\dfrac{\log_{y}m}{\log_{y}p}[/tex]
∴ [tex]\log _{a}x[/tex] = [tex]\dfrac{\log_{b}x}{\log_{b}a}[/tex]
Where, b is the common base of logarithm
∴ The value of [tex]\log _{a}x[/tex] = [tex]\dfrac{\log_{b}x}{\log_{b}a}[/tex]
Thus, the required option A) [tex]\dfrac{\log_{b}x}{\log_{b}a}[/tex] is correct.