The following data represent baseball batting averages for a random sample of National League players near the end of the baseball season. The data are from the baseball statistics section of The Denver Post.

0.194 0.258 0.190 0.291 0.158 0.295 0.261 0.250 0.181 0.125 0.107 0.260 0.309 0.309 0.276 0.287 0.317 0.252 0.215 0.250 0.246 0.260 0.265 0.182 0.113 0.200

(a) Multiply each data value by 1000 to "lea" the decimals. (Keep data values in the same order they appear in the table above.)
(b) Use the standard procedures of this section to make a frequency table with your whole-number data. Use five classes:
Class Limits, Class Boundaries, Midpoint, Frequency
(c) Divide class limits, class boundaries, and class midpoints by 1000 to get back to your original data values.

Respuesta :

Answer:

a) 194 258 190 291 158 295 261 250 181 125 107 260 309 309 276 287 317 252 215  250 246 260 265 182 113 200.

b)

Class interval/limits | Frequency |Class boundaries |Class midpoints

100 - 150                    | 3                  | 99.5 - 150.5          | 125

151 - 200                    | 6                 |  150.5 - 200.5       | 175.5

201 - 250                   | 4                 |  200.5 - 250.5      | 225.5

251 - 300                   | 10                | 250.5 - 300.5      | 275.5

301 - 350                   | 3                 |  300.5 - 350.5      | 325.5

You can include tally in the frequency table. Remember that, you will cross the sticks with every fifth counts.

c)

Class limits    |  Class boundaries   |   Class midpoints

0.100 - 0.150 | 0.0995 - 0.1505      |   0.125

0.151 - 0.200 | 0.1505 - 0.2005      | 0.1755

0.201 - 0.250 | 0.2005 - 0.2505    | 0.2255

0.251 - 0.300 | 0.2505 - 0.3005    | 0.2755

0.301 - 0.350  |  0.3005 -0.3505   | 0.3255

Step-by-step explanation:

Q&A Education