Respuesta :
Answer:
The speed is 42210 m/s.
Explanation:
Given that,
Normally wavelength [tex]\lambda= 497.22\ nm[/tex]
Observed spectral line [tex]\Delta \lambda+\lambda= 497.15\ nm[/tex]
We need to calculate the change in wavelength
Using formula of wavelength
[tex]\Delta \lambda+\lambda=497.15[/tex]
[tex]\Delta\lambda+497.22=497.15[/tex]
[tex]\Delta\lambda=497.15-497.22[/tex]
[tex]\Delta\lambda=−0.07\ nm[/tex]
We need to calculate the value of z
Using formula for z
[tex]z=\dfrac{\Delta\lambda}{\lambda}[/tex]
Put the value into the formula
[tex]z=\dfrac{-0.07}{497.22}[/tex]
[tex]z=−0.0001407[/tex]
We need to calculate the speed
Using formula of speed
[tex]v=c\times z[/tex]
Put the value into the formula
[tex]v=3\times10^{8}\times0.0001407[/tex]
[tex]v=42210\ m/s[/tex]
Hence, The speed is 42210 m/s.
Answer:
v = -4.22 x 10⁻⁴ m/s
Explanation:
given,
measured wavelength = 497.15 nm
Normally wavelength = 497.22 nm
Change in wavelength
Δ λ = 497.15 - 497.22
Δ λ = -0.07 nm
using Doppler's equation
[tex]\dfrac{\Delta \lambda}{\lambda}=\dfrac{v}{c}[/tex]
v is the speed of the star
c is the speed of light
[tex]\dfrac{-0.07\ nm}{497.22\ nm}=\dfrac{v}{3\times 10^8}[/tex]
v = -4.22 x 10⁻⁴ m/s
Speed of the star moving is equal to v = -4.22 x 10⁻⁴ m/s