A uniform, solid, 1100.0 kg sphere has a radius of 5.00 m. Find the gravitational force this sphere exerts on a 2.40 kgkg point mass placed at the following distances from the center of the sphere: (a) 5.01 mm , and (b) 2.50 mm .

Respuesta :

Explanation:

(a)   The given data is as follows.

           M = 1100 kg,        r = 5.01 mm = [tex]5.01 \times 10^{-3}[/tex] m

          m = 2.40 kg

Now, formula for Newton's law of gravitation is as follows.

                 F = [tex]\frac{GMm}{r^{2}}[/tex]

Putting the given values into the above formula as follows.

               F = [tex]\frac{GMm}{r^{2}}[/tex]

                  = [tex]\frac{6.673 \times 10^{-11} Nm^{2}/kg^{2} \times 1100 \times 2.40 kg}{(5.01 \times 10^{-3})^{2}}[/tex]  

                  = [tex]7.02 \times 10^{-3}[/tex] N

Therefore, gravitational force exerted by the given sphere on 2.40 kg point mass is [tex]7.02 \times 10^{-3}[/tex] N.

(b) Now, mass of the sphere beyond r = 2.50 mm or [tex]2.50 \times 10^{-3} m[/tex] will not contribute any force on the point mass.

Hence, mass within the radius r < R that experiences force is,

                 [tex]m^{1} = M \frac{r^{3}}{R^{3}}[/tex]

According to Newton's law of gravitation,

           F = [tex]\frac{Gm^{1}m}{r^{2}}[/tex]

             = [tex]\frac{Gm(M \frac{r^{3}}{R^{3}})}{r^{2}}[/tex]

             = [tex]G \frac{mMr}{R^{3}}[/tex]

Here, r is the radius of point mass and R is the radius of solid sphere.

Therefore, putting the given values into the above formula as follows.

           F = [tex]G \frac{mMr}{R^{3}}[/tex]

              = [tex]\frac{6.673 \times 10^{-11} Nm^{2}/kg^{2} \times 1100 kg \times 2.40 kg \times 2.50 \times 10^{-3}}{(5)^{3}}[/tex]

              = [tex]3.52 \times 10^{-9}[/tex] N

Therefore, the gravitational force this sphere exerts on a 2.40 kg is [tex]3.52 \times 10^{-9}[/tex] N.

Gravitational force exerted on a 2.4 kg point mass placed

a) At 5.01 mm from the center of the sphere = 7.02 * 10⁻³ N

b) At 2.50 mm from the center of the sphere = 3.52 * 10⁻⁹ N

Given data :

Mass ( M ) = 1100 kg

Radius ( R ) = 5.00 m

point mass ( m ) = 2.40 kg

Gravitational constant = 6.673 * 10⁻¹¹

a) Gravitational force exerted at  5.01 mm from the center of the sphere

applying Newton's law of gravitation

r = 5.01 * 10⁻³ m

F = [tex]\frac{GMm}{r^{2} }[/tex]   =  ( 6.673 * 10⁻¹¹ * 1100 * 2.40 ) / (  5.01 * 10⁻³ )²

                = 7.02 * 10⁻³ N

B) Determine the gravitational force exerted at 2.50 mm from the center

Applying Newton's law of gravitation

r = 2.5 * 10⁻³ m

F = [tex]\frac{GMm}{r^{2} }[/tex]  = ( 6.673 * 10⁻¹¹ * 1100 * 2.40 ) / (  2.50 * 10⁻³ )²

               = 3.52 * 10⁻⁹ N

Hence we can conclude that the Gravitational force exerted on a 2.4 kg point mass placed At 5.01 mm from the center of the sphere = 7.02 * 10⁻³ N At 2.50 mm from the center of the sphere = 3.52 * 10⁻⁹ N

Learn more : https://brainly.com/question/22777423

Q&A Education