Respuesta :
Answer:
[tex]t=5057.9167\ s[/tex]
Explanation:
Given:
- Voltage supply to the resistor, [tex]V=24\ V[/tex]
- current supply to the resistor, [tex]I=0.1\ A[/tex]
- mass of water, [tex]m_w= 51\ g[/tex]
- specific heat of water, [tex]c_w=4180\ J.kg^{-1}.K^{-1}[/tex]
- specific heat of resistor, [tex]c_r=3700\ J.kg^{-1}.K^{-1}[/tex]
- mass of resistor, [tex]m_r=0.008\ kg[/tex]
- change in temperature, [tex]\Delta T=50\ K[/tex]
Now the amount of heat required to heat the water by 50 K:
[tex]Q_w=m_w.c_w.\Delta T[/tex]
[tex]Q_w=0.051\times 4180\times 50[/tex]
[tex]Q_w=10659\ J[/tex]
Now the amount of heat required to heat the resistor by 50 K:
[tex]Q_r=m_r.c_r.\Delta T[/tex]
[tex]Q_r=0.008\times 3700\times 50[/tex]
[tex]Q_r=1480\ J[/tex]
Now the total heat to converted from the electrical energy:
[tex]Q=Q_w+Q_r[/tex]
[tex]Q=12139\ J[/tex]
Now Using Joule's law of heating:
[tex]Q=V.I.t[/tex]
[tex]12139=24\times 0.1\times t[/tex]
[tex]t=5057.9167\ s[/tex]
The time taken to raise the temperature of the water by 5°K is 445.625 seconds.
Heat energy:
First, we calculate the total amount of heat required to raise the temperature of the water by 5°K,
[tex]\Delta Q=m_wc_w\Delta T[/tex]
where [tex]m_w[/tex] = 51gm is the mass of water
[tex]c_w[/tex] = 4.18 J/gK is the specific heat of the water
and ΔT = 5K is the change in temperature
so, the heat required is:
[tex]\Delta Q= 51\times4.18\times5\;J\\\\\Delta Q=1069.5\;J[/tex]
Now, the electrical energy generated by the circuit must be equal to the heat required, so:
E = ΔQ = V×I×t
where t is the time taken
V = 24 V is the potential difference, and
I = 0.1 A is the current
[tex]1069.5=24\times0.1\times t\\\\t=445.625\;s[/tex]
so the time taken is 445.625 s.
Learn more about specific heat:
https://brainly.com/question/2516072?referrer=searchResults