Answer:
P(20≤x≤35) = 0.75 .
Step-by-step explanation:
We know that the probability distribution function of Uniform Distribution is represented as :
If x follows Uniform(c,d) then,
f(x) = [tex]\frac{1}{d-c}[/tex] where c < x < d
To fond the given probability it is better to first calculate the Cumulative Distribution Function(CDF) of Uniform Distribution.
The CDF of Uniform Distribution is P(X<=x) = [tex]\frac{x-c}{d-c}[/tex] where d > c .
Therefore, P(20<=x<=35) = P(x<=35) - P(x<20)
P(x<=35) = [tex]\frac{x-20}{40-20}[/tex] because we are given c = 20 and d = 40.
= [tex]\frac{35-20}{40-20}[/tex] = 0.75
P(x<20) = [tex]\frac{x-20}{40-20}[/tex] = [tex]\frac{20-20}{40-20}[/tex] = 0
Hence, P(20<=x<=35) = 0.75 - 0 = 0.75.