Respuesta :

Answer:

MN = 10

Step-by-step explanation:

To find the length of a line segment or the straight distance between two points, use the formula  [tex]L = \sqrt{(x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2}}[/tex] , where you can substitute two points, which would be (x₁ , y₁) and (x₂ , y₂). "L" stands for length.

Choose point 1 and point 2:

Point 1: M (2, -3)     x₁ = 2  y₁ = -3

Point 2: N (8, 5)     x₂ = 8   y₂ = 5

Substitute the values for the variables:

[tex]L = \sqrt{(x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2}}[/tex]

[tex]L = \sqrt{(8-2)^{2}+(5-(-3))^{2}}[/tex]    Solve inside each bracket first by adding

[tex]MN = \sqrt{(6)^{2}+(8)^{2}}[/tex]      Square each number

[tex]MN = \sqrt{36+64}[/tex]        Add the numbers

[tex]MN = \sqrt{100}[/tex]          Find the square root

[tex]MN = 10[/tex]          Length of the line segment

Therefore the length of the line segment MN is 10.

Q&A Education