A helicopter carrying Dr. Evil takes off with a constant upward acceleration of 5.0 m/s2. Secret agent Austin Powers jumps on just as the helicopter lifts off the ground. After the two men struggle for 10.0 s, Powers shuts off the engine and steps out of the helicopter. Assume that the helicopter is in free fall after its engine is shut off, and ignore the effects of air resistance. (a) What is the maximum height above ground reached by the helicopter? (b) Powers deploys a jet pack strapped on his back 7.0 s after leaving the helicopter, and then he has a constant downward acceleration with magnitude 2.0 m/s2. How far is Powers above the ground when the helicopter crashes into the ground?

Respuesta :

Answer:

a) [tex]h=250\ m[/tex]

b) [tex]\Delta h=0.0835\ m[/tex]

Explanation:

Given:

  • upward acceleration of the helicopter, [tex]a=5\ m.s^{-2}[/tex]
  • time after the takeoff after which the engine is shut off, [tex]t_a=10\ s[/tex]

a)

Maximum height reached by the helicopter:

using the equation of motion,

[tex]h=u.t+\frac{1}{2} a.t^2[/tex]

where:

u = initial velocity of the helicopter = 0 (took-off from ground)

t = time of observation

[tex]h=0+0.5\times 5\times 10^2[/tex]

[tex]h=250\ m[/tex]

b)

  • time after which Austin Powers deploys parachute(time of free fall), [tex]t_f=7\ s[/tex]
  • acceleration after deploying the parachute, [tex]a_p=2\ m.s^{-2}[/tex]

height fallen freely by Austin:

[tex]h_f=u.t_f+\frac{1}{2} g.t_f^2[/tex]

where:

[tex]u=[/tex] initial velocity of fall at the top = 0 (begins from the max height where the system is momentarily at rest)

[tex]t_f=[/tex] time of free fall

[tex]h_f=0+0.5\times 9.8\times 7^2[/tex]

[tex]h_f=240.1\ m[/tex]

Velocity just before opening the parachute:

[tex]v_f=u+g.t_f[/tex]

[tex]v_f=0+9.8\times 7[/tex]

[tex]v_f=68.6\ m.s^{-1}[/tex]

Time taken by the helicopter to fall:

[tex]h=u.t_h+\frac{1}{2} g.t_h^2[/tex]

where:

[tex]u=[/tex] initial velocity of the helicopter just before it begins falling freely = 0

[tex]t_h=[/tex] time taken by the helicopter to fall on ground

[tex]h=[/tex] height from where it falls = 250 m

now,

[tex]250=0+0.5\times 9.8\times t_h^2[/tex]

[tex]t_h=7.1429\ s[/tex]

From the above time 7 seconds are taken for free fall and the remaining time to fall with parachute.

remaining time,

[tex]t'=t_h-t_f[/tex]

[tex]t'=7.1428-7[/tex]

[tex]t'=0.1428\ s[/tex]

Now the height fallen in the remaining time using parachute:

[tex]h'=v_f.t'+\frac{1}{2} a_p.t'^2[/tex]

[tex]h'=68.6\times 0.1428+0.5\times 2\times 0.1428^2[/tex]

[tex]h'=9.8165\ m[/tex]

Now the height of Austin above the ground when the helicopter crashed on the ground:

[tex]\Delta h=h-(h_f+h')[/tex]

[tex]\Delta h=250-(240.1+9.8165)[/tex]

[tex]\Delta h=0.0835\ m[/tex]

Q&A Education