Explanation:
A.
C(s) + H2O(g) --> CO(g) + H2(g) (x2)
CO(g) + H2O(g) --> CO2(g) + H2(g)
CO(g) + 3 H2(g) --> CH4(g) + H2O(g)
Adding the three equations up:
2C(s) + 2H2O(g) --> 2CO(g) + 2H2(g)
CO(g) + H2O(g) --> CO2(g) + H2(g)
CO(g) + 3 H2(g) --> CH4(g) + H2O(g)
Overall equation:
2C(s) + 2H2O(g) --> CO2(g) + CH4(g)
B.
2C(s) + 2H2O(g) --> 2CO(g) + 2H2(g)
= 2x 129.7 kJ/mol = 259.4 kJ/mol
CO(g) + H2O(g) --> CO2(g) + H2(g) ΔH°rxn = -41.2 kJ/mol
Using their individual heat of formation;
ΔH°rxn = H products - H reactants
= (-393.5 + 0) - (-110.5 + -241.8)
= -41.2 kJ/mol
CO(g) + 3H2(g) --> CH4(g) + H2O(g) ΔH°rxn = -206.17 kJ/mol
Using their individual heat of formation;
ΔH°rxn = H products - H reactants
= (-74.87 + -241.8) - (-110.5 + 0)
= -206.17 kJ
ΔH°overall rxn = sum of energies for the 3 reactions above
ΔH°overall reaction = 259.4 + -41.2 + -206.17
= 12.03 kJ/mol
Overall equation for the reaction: 2C(coal) + 2H2O(g) --> CO2(g) + CH4(g)
overall ΔH°rxn = 12.03 kJ/mol
C.
Number of moles of coal = mass/molar mass
= 6.28/12
= 0.523 mol
Total heat = number of moles * enthalpy change of the reaction
= 0.523 * 12.03
= 6.30 kJ