Answer:
The correct answer is: [tex]4\frac{3}{5}[/tex]
Step-by-step explanation:
According to the rule of BODMAS, division is done before addition.
So, in a + b ÷ c, we will first calculate, b ÷ c
Given b = [tex]2\frac{2}{5}[/tex] = [tex]\frac{12}{5}[/tex] , c = [tex]\frac{3}{4}[/tex] .
So, [tex]\frac{b}{c}[/tex] = [tex]\frac{12}{5}[/tex] ÷ [tex]\frac{3}{4}[/tex]
So, [tex]\frac{b}{c} = \frac{12}{5} \times\frac{4}{3}[/tex] , as the numerator and denominator gets reversed as division is changed to multiplication.
So, [tex]\frac{b}{c} = \frac{16}{5}[/tex] .
Next the value of a to [tex]\frac{b}{c}[/tex] , where, [tex]a = 1\frac{2}{5} = \frac{7}{5}[/tex], we get,
[tex]\frac{7}{5} +\frac{16}{5} = \frac{23}{5} = 4\frac{3}{5}[/tex].