contestada

The axis of symmetry for the graph of the function f start bracket x end bracket equals one-quarter x square plus b x plus 10 is x=6. What is the value of b?

Respuesta :

The value of b is -3

Explanation:

The function is [tex]f(x)=\frac{1}{4} x^{2} +bx+10[/tex] and [tex]x=6[/tex]

The function is of the form [tex]y=a x^{2}+bx+c[/tex]

where [tex]a=\frac{1}{4}[/tex], [tex]b=b[/tex] and [tex]c=10[/tex]

Using the axis of symmetry formula, we can determine the value of b.

Thus, the axis of symmetry formula is given by,

[tex]x=\frac{-b}{2a}[/tex]

Substituting the values, we have,

[tex]6=-\frac{b}{2(\frac{1}{4}) }[/tex]

Multiplying the denominator, we get,

[tex]6=-\frac{b}{\frac{1}{2} }[/tex]

Dividing, we get,

[tex]6=-2b[/tex]

Dividing both sides by -2, we get,

[tex]-3=b[/tex]

Hence, the value of b is -3.

Answer:

-3

Step-by-step explanation:

Edge 2021

Q&A Education