Respuesta :
The value of b is -3
Explanation:
The function is [tex]f(x)=\frac{1}{4} x^{2} +bx+10[/tex] and [tex]x=6[/tex]
The function is of the form [tex]y=a x^{2}+bx+c[/tex]
where [tex]a=\frac{1}{4}[/tex], [tex]b=b[/tex] and [tex]c=10[/tex]
Using the axis of symmetry formula, we can determine the value of b.
Thus, the axis of symmetry formula is given by,
[tex]x=\frac{-b}{2a}[/tex]
Substituting the values, we have,
[tex]6=-\frac{b}{2(\frac{1}{4}) }[/tex]
Multiplying the denominator, we get,
[tex]6=-\frac{b}{\frac{1}{2} }[/tex]
Dividing, we get,
[tex]6=-2b[/tex]
Dividing both sides by -2, we get,
[tex]-3=b[/tex]
Hence, the value of b is -3.