What steps are needed to convert benzene into p−isobutylacetophenone, a synthetic intermediate used in the synthesis of the anti-inflammatory agent ibuprofen?

Respuesta :

Answer:

This experiment requires two 3-h lab sessions: reduction of p-isobutylacetophenone to an alcohol and then convert this alcohol to the corresponding chloride

-convertion of chloride to a Grignard reagent

Explanation:

A method for the synthesis of ibuprofen in introductory organic chemistry laboratory .This experiment requires two 3-h lab sessions. All of the reactions and techniques are a standard part of any introductory organic chemistry course. In the first lab session, reduction of p-isobutylacetophenone to an alcohol and then convert this alcohol to the corresponding chloride. In the second session, convert this chloride to a Grignard reagent, which is then carboxylated and protonated to give ibuprofen. Although the final yield is modest, this procedure offers both practicability and reliability. Permanent-magnet 60 MHz 1H NMR spectra of the final product and the two intermediates are clean and are easily interpreted by the students. Because, as previously reported, the benzylic methylene and the benzylic methine of ibuprofen have virtually identical 13C NMR chemical shifts and cancel or nearly cancel each other in the DEPT spectrum, this synthesis provides a fitting opportunity for the introduction of HETCOR even with a permanent-magnet Fourier transform instrument.

Q&A Education