Answer:
Explanation:
Given
Spring constant of spring A is [tex]k_A=100\ N/m[/tex]
Spring constant of spring B is [tex]k_B=200\ N/m[/tex]
If displacement in both the springs is [tex]x=0.2\ m[/tex]
Potential Energy stored in the spring is given by
[tex]U=\frac{1}{2}kx^2[/tex]
where k=spring constant
x=compression or extension
[tex]U_A=\frac{1}{2}\times 100\times (0.2)^2----1[/tex]
[tex]U_B=\frac{1}{2}\times 200\times (0.2)^2----2[/tex]
Divide 1 and 2
[tex]\frac{U_B}{U_A}=\frac{200}{100}=2[/tex]
[tex]U_A=\frac{U_B}{2}[/tex]
So Potential Energy Stored in Spring A is half of Spring B