Suppose that if θ = 1, then y has a normal distribution with mean 1 and standard deviation σ, and if θ = 2, then y has a normal distribution with mean 2 and standard deviation σ. Also, suppose Pr(θ = 1) = 0.5 and Pr(θ = 2) = 0.5.

Respuesta :

Step-by-step explanation:

We have two cases for Ф,

1.  Ф=1; it implies that Pr(Ф=1)=0.5, while y~N(1,α²)

2. Ф=2; it implies that Pr(Ф=2)=0.5, while y~N(2,α²)

Now,

For 1st case of α=2,

We have marginal probability density formula

p(y)=∑p(yIФ)p(Ф)

=p(yIФ=1)p(Ф=1)+p(yIФ=2)p(Ф=2)

=N(yI1,2²)(1/2)+N(yI2,2²)(1/2)

=(1/2)[N(yI1,2²)+N(yI2,2²)]

Now.

For Pr(Ф=1Iy=1) at α=2

We have,

=p(Ф=1Iy=1)

=[p(y=1,Ф=1)]/[p(y=1)]

=[p(y=1IФ=1)p(Ф=1)]/[p(y=1)]

={(1/[tex]\sqrt{2x-2}[/tex])exp[(-1/(2*2²))(1-1)²(1/2)]}/{(1/[tex]\sqrt{2x-2}[/tex])(1/2)[exp[(-1/(2*2²))(1-1)²]+exp[(-1/(2*2²))(1-2)²]}

=0.53 Answer

Now, to describe the changes in shape of Ф when α is increased and decreased:

The formula for posterioir density is p(ФIy)=p(yIФ)p(Ф)/p(y)

=exp[(-1/(2α²)(y-Ф)²]/{exp[(-1/(2α²)(y-1)²]+exp[(-1/(2α²))(y-2)²]}

Now at Ф=1 and solving the equation, we get

p(Ф=1Iy)=1 / {1+exp[(2y-3)/2α²]}

Similarly at Ф=1 and solving the equation, we get

p(Ф=2Iy)=1 / {1+exp[(2y-3)/2α²]}

Conclusion:

α² → ∞ ⇒p(ФIy) → p(Ф) = 1/2

α² → 0 ⇒ two cases

y > 3/2, α² → 0 ⇒p(Ф=2Iy) → 1

y < 3/2, α² → 0 ⇒p(Ф=1Iy) → 1

Q&A Education