A circular plastic disk with radius R = 1.80 cm has a uniformly distributed charge of Q = +(2.05 ✕ 106)e on one face. A circular ring of width 30 μm is centered on that face, with the center of the ring at radius r = 0.50 cm. What charge is contained within the width of the ring?

Respuesta :

Answer:

[tex]3.037037037\times 10^{-16}\ C[/tex]

Explanation:

dr= Width = 30 μm

R = Radius = 1.8 cm

Q = [tex]2.05\times 10^6\times 1.6\times 10^{-19}[/tex]

r = 0.5 cm

Area is given by

[tex]A=\pi r^2[/tex]

Differentiating with respect to r

[tex]dA=2\pi rdr[/tex]

Surface charge density is given by

[tex]\sigma=\dfrac{Q}{A}\\\Rightarrow \sigma=\dfrac{Q}{\pi r^2}[/tex]

Charge is given by

[tex]q=\sigma dA\\\Rightarrow q=\dfrac{Q}{\pi r^2} 2\pi rdr\\\Rightarrow q=\dfrac{2Qrdr}{R^2}\\\Rightarrow q=\dfrac{2\times 2.05\times 10^6\times 1.6\times 10^{-19}\times 0.005\times 30\times 10^{-6}}{0.018^2}\\\Rightarrow q=3.037037037\times 10^{-16}\ C[/tex]

The charge contained in the ring is [tex]3.037037037\times 10^{-16}\ C[/tex]

Q&A Education